Eksponensieel Geweegde Bewegende Gemiddelde Finansies
Geweegde Moving Gemiddeldes: Die Basics Oor die jare, het tegnici twee probleme met die eenvoudige bewegende gemiddelde gevind. Die eerste probleem lê in die tyd van die bewegende gemiddelde (MA). Die meeste tegniese ontleders glo dat die prys aksie. die opening of sluiting voorraad prys, is nie genoeg om op te hang vir goed voorspel koop of te verkoop seine van die MA crossover aksie. Om hierdie probleem op te los, het ontleders nou meer gewig toeken aan die mees onlangse prys data deur gebruik te maak van die eksponensieel stryk bewegende gemiddelde (EMA). (Meer inligting in die ondersoek van die eksponensieel geweeg bewegende gemiddelde.) 'N voorbeeld Byvoorbeeld, met behulp van 'n 10-dag MA, sou 'n ontleder die sluitingsprys van die 10de dag te neem en vermeerder hierdie getal deur 10, die negende dag van nege, die agtste van dag tot agt en so aan tot die eerste van die MA. Sodra die totale bepaal, sou die ontleder dan verdeel die aantal deur die byvoeging van die vermenigvuldigers. As jy die vermenigvuldigers van die 10-dag MA voorbeeld te voeg, die getal is 55. Hierdie aanwyser is bekend as die lineêr geweeg bewegende gemiddelde. (Vir verwante leesstof, check Eenvoudige bewegende gemiddeldes Maak Trends uitstaan.) Baie tegnici is ferm gelowiges in die eksponensieel stryk bewegende gemiddelde (EMA). Hierdie aanwyser is verduidelik in so baie verskillende maniere waarop dit verwar studente en beleggers sowel. Miskien is die beste verduideliking kom van John J. Murphy tegniese ontleding van die finansiële markte, (uitgegee deur die New York Instituut van Finansies, 1999): Die eksponensieel stryk bewegende gemiddelde adresse beide van die probleme wat verband hou met die eenvoudige bewegende gemiddelde. Eerstens, die eksponensieel stryk gemiddelde ken 'n groter gewig aan die meer onlangse data. Daarom is dit 'n geweegde bewegende gemiddelde. Maar terwyl dit ken mindere belang vir verlede prys data, beteken dit sluit in die berekening al die data in die lewe van die instrument. Daarbenewens het die gebruiker in staat is om die gewig te pas by mindere of meerdere gewig te gee aan die mees onlangse dae prys, wat by 'n persentasie van die vorige dae waarde. Die som van beide persentasie waardes voeg tot 100. Byvoorbeeld, die laaste dae die prys kan 'n gewig van 10 (0,10), wat by die vorige dae gewig van 90 (0,90) opgedra. Dit gee die laaste dag 10 van die totale gewig. Dit sou die ekwivalent van 'n 20-dag gemiddeld deur die laaste dae die prys 'n kleiner waarde van 5 (0,05) wees. Figuur 1: eksponensieel stryk bewegende gemiddelde Bogenoemde grafiek toon die Nasdaq saamgestelde indeks van die eerste week in Augustus 2000 tot 1 Junie 2001 As jy duidelik kan sien, die EMO, wat in hierdie geval is die gebruik van die sluitingsprys data oor 'n tydperk van nege dae, het definitiewe verkoop seine op die 8 September (gekenmerk deur 'n swart afpyltjie). Dit was die dag toe die indeks het onder die vlak 4000. Die tweede swart pyl toon 'n ander af been wat tegnici eintlik verwag het nie. Die Nasdaq kon genoeg volume en belangstelling van die kleinhandel beleggers na die 3000 merk breek nie genereer. Dit dan duif weer af na onder uit by 1619,58 op April 4. Die uptrend van 12 April is gekenmerk deur 'n pyl. Hier is die indeks gesluit 1,961.46, en tegnici begin institusionele fondsbestuurders begin om af te haal 'n paar winskopies soos Cisco, Microsoft en 'n paar van die energie-verwante kwessies te sien. (Lees ons verwante artikels: Moving Gemiddelde Koeverte:. Verfyning 'n gewilde Trading Tool en bewegende gemiddelde Bounce) Berekening EWMA Korrelasie Gebruik Excel Ons het onlangs geleer het oor hoe om wisselvalligheid te skat met behulp van EWMA eksponensieel Geweegde bewegende gemiddelde. Soos ons weet, EWMA vermy die slaggate van ewe geweegde gemiddeldes want dit gee meer gewig aan die meer Onlangse waarnemings in vergelyking met die ouer waarnemings. So, as ons uiterste opbrengste in ons data, met verloop van tyd, hierdie data word ouer en kry minder gewig in ons berekening. In hierdie artikel sal ons kyk na hoe ons korrelasie kan bereken met behulp van EWMA in Excel. Ons weet dat die korrelasie word bereken deur die volgende formule te gebruik: Die eerste stap is om die kovariansie tussen die twee ruil reeks te bereken. Ons gebruik die smoothing faktor Lambda 0.94, soos gebruik in RiskMetrics. Oorweeg die volgende vergelyking: Ons gebruik die kwadraat opbrengste R2 as die reeks x in hierdie vergelyking vir afwyking voorspellings en kruis produkte van twee opbrengste as die reeks x in die vergelyking vir kovariansie voorspellings. Let daarop dat dieselfde lambda word vir alle afwykings en kovariansie. Die tweede stap is om die afwykings en standaardafwyking van elke terugkeer reeks te bereken, soos beskryf in hierdie artikel Bereken Historiese Volatiliteit Gebruik EWMA. Die derde stap is om die korrelasie te bereken deur te steek in die waardes van Kovariansie en standaardafwykings in die bostaande formule vir korrelasie. Die volgende Excel vel gee 'n voorbeeld van die korrelasie en wisselvalligheid berekening in Excel. Dit neem die log opbrengste van twee aandele en bereken die korrelasie tussen them. Calculate Historiese Volatiliteit Gebruik EWMA Volatiliteit is die mees algemeen gebruik word mate van risiko. Wisselvalligheid in hierdie sin kan óf historiese wisselvalligheid (een waargeneem uit die verlede data), of dit kan geïmpliseer wisselvalligheid Die historiese wisselvalligheid kan bereken word op drie maniere, naamlik (onderhou van markpryse van die finansiële instrumente.): Eenvoudige wisselvalligheid, eksponensieel Geweegde Moving Gemiddeld (EWMA) GARCH Een van die groot voordele van EWMA is dat dit gee meer gewig aan die onlangse opbrengste, terwyl die berekening van die opbrengs. In hierdie artikel, sal ons kyk na hoe wisselvalligheid word bereken deur gebruik te maak EWMA. So, laat ons begin: Stap 1: Bereken log opbrengste van die prys reeks As ons kyk na die aandeelpryse, kan ons die daaglikse lognormale opbrengste bereken met behulp van die formule ln (P i / P i -1), waar P verteenwoordig elke dae eindvoorraad prys. Ons moet die natuurlike log te gebruik, want ons wil die opbrengste voortdurend te vererger. Ons sal nou daagliks opbrengste vir die hele prys reeks. Stap 2: vierkant die opbrengs Die volgende stap is die neem van die vierkante van lang opbrengste. Dit is eintlik die berekening van eenvoudige variasie of wisselvalligheid wat deur die volgende formule te gebruik: Hier, jy verteenwoordig die opbrengs, en m verteenwoordig die aantal dae. Stap 3: Ken gewigte Ken gewigte sodanig dat onlangse opbrengste hoër gewig en ouer opbrengste het minder gewig. Vir hierdie het ons 'n faktor genoem Lambda (), wat 'n glad konstante of die aanhoudende parameter. Die gewigte word toegeken as (1-) 0. Lambda moet wees minder as 1. Risiko metrieke gebruik lambda 94. Die eerste gewig sal wees (1-0,94) 6, die tweede gewig sal wees 60,94 5,64 en so aan. In EWMA al die gewigte op te som tot 1, maar hulle dalende met 'n konstante verhouding van. Stap 4: Vermenigvuldig Opbrengste-kwadraat met die gewigte Stap 5: Neem die opsomming van R 2 w Dit is die finale EWMA variansie. Die wisselvalligheid sal die vierkantswortel van variansie wees. Die volgende kiekie toon die berekeninge. Die voorbeeld hierbo dat ons gesien het, is die benadering beskryf deur RiskMetrics. Die algemene vorm van EWMA kan voorgestel word as die volgende rekursiewe formule: 1 CommentExponential bewegende gemiddelde - EMO laai die speler. Afbreek van Eksponensiële bewegende gemiddelde - EMO Die 12- en 26-dag EMA is die gewildste kort termyn gemiddeldes, en hulle word gebruik om aanwysers soos die bewegende gemiddelde konvergensie divergensie (MACD) en die persentasie prys ossillator (PPO) te skep. In die algemeen, is die 50- en 200-dag EMA as seine van 'n lang termyn tendense. Handelaars wat tegniese ontleding diens vind bewegende gemiddeldes baie nuttig en insiggewend wanneer dit korrek toegepas word, maar skep chaos wanneer onbehoorlik gebruik of verkeerd verstaan. Al die bewegende gemiddeldes wat algemeen gebruik word in tegniese ontleding is, volgens hulle aard, sloerende aanwysers. Gevolglik moet die afleidings wat op die toepassing van 'n bewegende gemiddelde op 'n bepaalde mark grafiek wees om 'n mark skuif bevestig of om sy krag te toon. Heel dikwels is, teen die tyd dat 'n bewegende gemiddelde aanwyser lyn het 'n verandering aan 'n beduidende stap in die mark weerspieël gemaak het die optimale punt van toegang tot die mark reeds geslaag. 'N EMO nie dien om hierdie dilemma te verlig tot 'n mate. Omdat die EMO berekening plaas meer gewig op die jongste data, dit drukkies die prys aksie 'n bietjie stywer en reageer dus vinniger. Dit is wenslik wanneer 'n EMO word gebruik om 'n handels inskrywing sein herlei. Interpretasie van die EMO Soos alle bewegende gemiddelde aanwysers, hulle is baie meer geskik vir trending markte. Wanneer die mark is in 'n sterk en volgehoue uptrend. die EMO aanwyser lyn sal ook 'n uptrend en andersom vir 'n down tendens toon. A waaksaam handelaar sal nie net aandag te gee aan die rigting van die EMO lyn, maar ook die verhouding van die tempo van verandering van die een bar na die volgende. Byvoorbeeld, as die prys aksie van 'n sterk uptrend begin plat en reverse, van die EMAS tempo van verandering van die een bar na die volgende sal begin om te verminder tot tyd en wyl die aanwyser lyn plat en die tempo van verandering is nul. As gevolg van die sloerende uitwerking, deur hierdie punt, of selfs 'n paar bars voor, die prys aksie moet reeds omgekeer. Dit volg dus dat die waarneming van 'n konsekwente verminderde in die tempo van verandering van die EMO kon self gebruik word as 'n aanduiding dat die dilemma wat veroorsaak word deur die sloerende uitwerking van bewegende gemiddeldes verder kon teen te werk. Algemene gebruike van die EMO EMA word algemeen gebruik word in samewerking met ander aanwysers aan beduidende mark beweeg bevestig en om hul geldigheid te meet. Vir handelaars wat intraday en vinnig bewegende markte handel te dryf, die EMO is meer van toepassing. Dikwels handelaars gebruik EMA om 'n handels vooroordeel bepaal. Byvoorbeeld, as 'n EMO op 'n daaglikse grafiek toon 'n sterk opwaartse neiging, kan 'n intraday handelaars strategie wees om net handel van die lang kant op 'n intraday chart. EWMA 101 Die EWMA benadering het 'n aantreklike kenmerk: dit vereis relatief min data gestoor . Om ons skatting op enige punt op te dateer, ons moet net 'n vorige skatting van die variansie koers en die mees onlangse waarneming waarde. 'N Sekondêre doel van EWMA is om veranderinge in die wisselvalligheid op te spoor. Vir klein waardes, Onlangse waarnemings beïnvloed die skatting stiptelik. Vir waardes nader aan een, die skatting veranderinge stadig gebaseer op onlangse veranderings in die opbrengste van die onderliggende veranderlike. Die RiskMetrics databasis (wat deur JP Morgan en openbaar gemaak beskikbaar) gebruik die EWMA met vir die opdatering daagliks wisselvalligheid. BELANGRIK: Die EWMA formule nie aanvaar 'n lang loop gemiddelde variansie vlak. So, die konsep van wisselvalligheid beteken terugkeer is nie vasgevang word deur die EWMA. Die ARCH / GARCH modelle is beter geskik vir hierdie doel. Lambda 'n Sekondêre doel van EWMA is om veranderinge in die wisselvalligheid op te spoor, sodat vir klein waardes, onlangse waarneming beïnvloed die skatting stiptelik, en vir waardes nader aan een, die skatting veranderinge stadig onlangse veranderinge in die opbrengste van die onderliggende veranderlike. Die RiskMetrics databasis (wat deur JP Morgan) en openbare beskikbaar gestel in 1994, gebruik die EWMA model met vir die opdatering daagliks wisselvalligheid skatting. Die maatskappy het bevind dat oor 'n reeks van die mark veranderlikes, hierdie waarde van gee voorspelling van die variansie wat die naaste aan besef variansie koers kom. Die besef variansie tariewe op 'n bepaalde dag is bereken as 'n ewe-gemiddelde van die daaropvolgende 25 dae. Net so, om die optimale waarde van lambda bereken vir ons datastel, moet ons die besef wisselvalligheid by elke punt te bereken. Daar is verskeie metodes, so kies een. Volgende, bereken die som van 'n vierkant foute (SSE) tussen EWMA skatting en besef wisselvalligheid. Ten slotte, verminder die SSE deur wisselende die lambda waarde. Klink maklik dit is. Die grootste uitdaging is om in te stem op 'n algoritme om besef wisselvalligheid bereken. Byvoorbeeld, die mense by RiskMetrics verkies die daaropvolgende 25-dag te besef variansie koers bereken. In jou geval, kan jy 'n algoritme wat daaglikse volume gebruik, MI / LO en / of openbare-close pryse te kies. Vrae Q 1: Kan ons gebruik EWMA om te skat (of voorspel) wisselvalligheid meer as 'n stap vorentoe Die EWMA wisselvalligheid verteenwoordiging nie aanvaar 'n langtermyn gemiddelde wisselvalligheid, en dus, vir enige vooruitsig horison meer as een-stap, die EWMA gee 'n konstante waarde:
Comments
Post a Comment